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The theory of deductive program synthesis and verification relies on complete
proofs of specifications. Such proofs are assumed to be found by an automated
deduction program or constructed manually using a proof-checking system. This
contradicts practice: even in mathematics most proofs are very far from being
complete, and verification of programs usually checks only “principal” parts.
Our goal here is to support this practice by some existing and new theory.

1 Classical First Order Logic

When specifications do not require inductive proofs, the main program synthesis
tool is Herbrand’s theorem. For existential formulas 3z R(x) with quantifier-free
R(z) there is a transformation of any first order proof 7 : 3zR(x) into a set of
witnesses t1,...,t, such that R(¢t1) V...V R(t,). The whole proof 7 is needed
in the standard formulation, while in fact only quantifier inferences are used,
and the whole propositional part is redundant. Predicate inferences contain
mathematically and algorithmically interesting part of the proof; propositional
part is usually the most labor-consuming and often non-interesting part.

An exact formulation of the observation above uses e-calculus. Instead of
quantifiers it has terms ez A(z), read “some x satisfying A(x)”. The only non-
propositional axioms are critical formulas

A(t) = A(exA(x)) (1)
Quantifiers are defined by
Az A(z))" = A% (ex A (z)), (2)
using the relation “there exists x satisfying A(x) iff A is satisfied by some x”.

Lemma 1.1 (¢f. [3]). The translation * transforms propositional rules into
propositional rules, the rule of 3-elimination into the rule of substitution and the
rule of 3-introduction into a critical formula (plus substitution and propositional
inferences).



After that the first e-theorem (cf. [3]) allows us to find instances for exis-
tential 3z R(z) depending only on critical formulas Cr that tautologically imply
R(exR(z)).

2 Constructive Proofs

The main pragmatic reason for having constructive or intuitionistic proofs is a
possibility to extract programs from proofs 7 : dzA(z) without any restriction
for A(x). In this new logic one cannot completely ignore the propositional part
of m: implications contribute significantly into the complexity of the eventual
program. Most program extraction methods here are based on functional in-
terpretation that are based on Brouwer-Heyting-Kolmogorov interpretation of
constructive logical connectives. These interpretations differ in the amount of
information they need. For example modified realizability mr, a functional in-
terpretation introduced by G. Kreisel, ignores negative premises of implications:

zmr(mA— B)=-A—>xzmr B

Another manifestation of the same phenomenon is Harrop’s theorem.

Theorem 2.1 For arbitrary A,B, if ~A — 3z B(x) is derivable (in intuitionis-
tic first or higher order logic, intuitionistic first or higher order arithmetic etc.),
then = A — B(t) for some t is derivable in the same theory.

In fact =A can be replaced by any V,3-free formula C. Proofs of such
lemmas C, even of number-theoretic identities, to say nothing about Riemann
Hypothesis or Fermat’s Last Theorem, can be very complicated, but they can
be skipped if we are interested only in the program.

3 Arithmetic; e-substitution Method

In the case of classical arithmetic, the most venerable method of extracting wit-
nesses from the proofs of purely existential formulas 3z R(x) with quantifier-free
R(z) is Hilbert’s e-substitution method, [3, 5]. It works after the *-translation
(2) was applied to extract from a given proof 7 a finite system Cr of critical
formulas. The method generates a sequence of e-substitutions

S0, 51, - (3)

Each of S; has a form
(ex1A1,n1),..., (ex1 Ak, ng) 4)
for natural numbers ny,...,ng. The goal is to find an e-substitution (4) solving

given system C'r of critical formulas, that is making C'r true after a substitution
(ex1A1/n4,...,€x1Ar/ng) and computation. If an implication Cr — R(ezR(z))



is derivable without use of critical formulas, such a solving substitution provides
an n satisfying R(n).

W. Ackermann proved termination of the e-substitution method for arith-
metic. His proof is not simple (G. Kreisel considered it to be a version of the
priority method) and resists extension to stronger systems. A new approach
proposed by the present author admits extension to stronger systems using
infinitary proofs in e-calculus [5]. Expansion of a linear sequence (3) into a
two-dimensional infinitary proof h*° adds new intuitions and enables new ge-
ometrical constructions, but seems to prevent computational treatment. We
describe below such a treatment using incomplete proofs.

Consider a new formal system P Aex in the language of arithmetical e-terms.
Derivable objects are sequents

(€$1A1,u1),...,(62L'1Ak,'uk) (5)

where e; are closed arithmetical e-terms containing no proper closed e-subterms,
and u; € {?,7°,+} UIN. A sequent contains at most one component of the form
(e,+). Such a component provides an incomplete information to be replaced
later by a natural number, resulting in (e,n). A “proof” of a sequent (e, +),©
can be simply an axiom AxA((e, +), ©), promising a proof of a suitable sequent
(e,n), O for some n € IN in the future. In this sense proofs in PAex are incom-
plete. Exact definitions below use notation from [5].

Definition 1 Two sequents ¥ and © are multiplicable if © UX is a function
after identification (e, ?°) —= (e,?) and (e, +) —= (e,n) if the latter is present.
In this case we write © * ¥ for © U X.

Axioms

AxF(©) © is ci

AxS(©) © is solving

AxH. ,(©) e is the H-term, v is the H-value of ©
AxA(O) O is an arbitrary sequent

Rules of inference

?0). 0 (€] 7),0 (C]
(e,77),0 (e, +), Cut, (e,7),0 (e, +), CutFr,
(C] Q]
7?0 5T 5+ 5®
(€,77),T (e, 4) R, 9g ©p
(e,7), T+ 0O (] C)
,7),0 (e,v), O<rr(e
(e,7) . <rh(e) ©

C]

An ordinal assignment for a derivation h is defined with a path 7 for the end-
sequent of h as an additional argument. In fact 7 is used only in R.-case, and
we omit it in all other cases.

(e,?),0 “' Tx0



Definition 2 Let do = 1, if (e,+) occurs in ©, and e is needed for computing
truth-values of critical formulas or the next e-substitution; o = 0 otherwise.

(1 if h=AxX(0), X # A

Nicr(@)lo +1—do if h = AxA(©), © computes Cr

w+ Nicr|e — do if h = AxA(O) otherwise

o(h) := { o(h1) + length(m) + 1 + o(ho) if h = Rchohy

wo(ho) if h = E hom

max(o(ho), O(hl)) +1 Zf h = Cutohohy, CutFrhghy

Lo(ho) +1 if h="Thy, T =Fr,H,D,W
Theorem 3.1 Every sequence (4) generated by the e-substitution method can
be effectively transformed into a sequence of proofs hg : Sg, hy : S1,- .. such that
o(ho) > o(h1) > .... Hence e-substitution method terminates.

Ordinal assignment o(h) and the construction of proofs h; use ideas from [4] and
definitions from [1]. It is natural to expect that these constructions and proofs
can be extended to all subsystems of analysis (second order arithmetic) admit-
ting proof-theoretic ordinal analysis via cut-elimination. This will constitute a
progress in problem stated by D. Hilbert in [2].
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